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1
VARIABLE SPEED CHIEN SEARCH
ARCHITECTURE

BACKGROUND

An error correction code (ECC) may be used to protect
data or recover from errors related to a medium via which
the data was either transmitted or stored. For example, data
may be encoded using an ECC to possibly recover from
errors associated with wired/wireless communications, stor-
age to memory devices/mediums or optical readers such as
2-dimensional bar code readers. ECC encoded data received
by either reading data from a memory device/medium or
barcode or received via a wired/wireless communication
channel may be able to identify and correct a given number
of errors. Typically, ECC encoded data may include code-
words having a combination of data and redundant or parity
bits or symbols. Depending on the size of a given codeword
and the level of protection desired, codewords may vary in
size and also may vary in the complexity of algorithms used
to recover from possible errors.

Errors in a given period of time may be referred to as a bit
error rate (BER). Technological advances in digital signal
transmissions that have greatly increased data transmission
speeds have also increased the possibility of a higher BER.
Also, memory storage/medium technologies have resulted in
increasingly denser storage that may also lead to an
increased possibility of a higher BER. In order to reduce the
impacts of possibly higher BERs, data may be encoded in
larger codewords. These larger codewords may have more
parity bits. Large codewords with more parity bits may
require complex algorithms implemented with increasing
amounts of computing resources.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

1 illustrates an example first system.

2 illustrates an example second system.

3 illustrates an example third system.

4 illustrates an example first layout.

5 illustrates an example second layout.

6 illustrates an example systolic array.

7 illustrates an example apparatus.

8 illustrates an example logic flow.

9 illustrates an example storage medium.

10 illustrates an example computing platform.

DETAILED DESCRIPTION

As contemplated in the present disclosure, large code-
words with more parity bits may require complex algorithms
implemented with increasing amounts of computing
resources in order to reduce BERs. In some examples, a
substantial amount of computing resources in a decoder for
ECC encoded data may be directed to circuitry arranged to
locate errors in the ECC encoded data. A particular type of
circuitry for locating errors that may be used is known as a
Chien search circuit. Typically, a Chien search circuit may
find error locations when the ECC used to encode the data
is Reed-Solomon (RS) codes or binary Bose, Chaudhuri, and
Hocquenghem (BCH) codes. Also, a Berlekamp-Massey
algorithm (BMA) may be implemented by computing
resources to generate error location polynomials (ELPs) that
are then evaluated by the Chien search circuit to identify
roots to the ELPs that identify error location(s).

A substantial amount of complexity and computing
resources may be attributed to Chien search circuits that may
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2

be arranged to find roots to ELPs. These roots are typically
found by exhaustive search of all potential values. Large
codewords having more parity bits may result in ELPs
having increasingly higher numbers of potential values to
search to find roots.

Typically Chien search circuits may be designed to find all
possible roots and thus locate errors for a worst case. In other
words, the larger the codeword having more parity bits to
protect data from errors, the larger the Chien search circuit
may be. However, depending on the usage case for ECC
encoded data, a large percentage of errors for the ECC
encoded data may be far below the worst case. Since Chien
search circuits need to identify error locations quickly, they
are typically implemented almost entirely in hardware. Also,
even if a give ELP indicates only a few errors, Chien search
circuits are typically designed to use the same amount of
computing resources regardless of the number of errors
identified in the ELP. As a result, computing resources may
be needlessly wasted and decoding of ECC encoded data
may be longer than necessary. It is with respect to these and
other challenges that the examples described herein are
needed.

In some examples, a variable speed Chien search archi-
tecture may be designed and/or used to locate errors in ECC
encoded data. For example, an ELP may be received at
circuitry for a memory system (e.g., a memory controller).
The ELP may have a given degree that indicates a maximum
number of error locations for the ECC encoded data. A
determination may then be made as to whether a Chien
search circuit designed according to the variable Chien
search architecture is capable of finding the maximum
number of error locations indicated by the ELP in a single
pass through a plurality of processing units included in the
Chien search circuit. Roots for the ELP may then be found
in the single pass or in a plurality of passes based on the
determination.

FIG. 1 illustrates an example first system. As shown in
FIG. 1, the first system includes memory cache 105. In some
examples, memory cache 105 may include a controller 110
and a memory 120. According to some examples, controller
110 may receive and/or fulfill read/write requests via com-
munication link 130. Although not shown in FIG. 1, in some
examples, communication link 130 may communicatively
couple controller 110 to elements or features associated with
an operating system for a computing device such as a storage
server. For these examples, memory cache 105 may function
as a memory cache for the computing device.

In some examples, as shown in FIG. 1, controller 110 may
include an error correction code (ECC) encoder 112 and an
ECC decoder 114. ECC encoder 112 may include logic
and/or features to generate codewords to protect data to be
written to memory 120. As described in more detail below,
ECC decoder 114 may include logic and/or features to
detect, locate and possibly correct errors included in ECC
encoded data. According to some examples, the ECC used to
encode the data may include, but is not limited to, RS codes
or BCH codes.

In some examples, memory 120 may include non-volatile
and/or volatile types of memory. Non-volatile types of
memory may include, but are not limited to, flash memory,
ferroelectric memory, phase change memory (PCM), sili-
con-oxide-nitride-oxide-silicon (SONOS) memory, polymer
memory such as ferroelectric polymer memory, nanowire,
ferroelectric transistor random access memory (FeTRAM or
FeRAM), ovonic memory, nanowire or electrically erasable
programmable read-only memory (EEPROM). Volatile
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types of memory may include, but are not limited to,
dynamic random access memory (DRAM) or static RAM
(SRAM).

In some examples, memory 120 may also include types of
storage mediums such as optical discs to include, but not
limited to, compact discs (CDs), digital versatile discs
(DVDs), a high definition DVD (HD DVD) or a Blu-ray
disc.

FIG. 2 illustrates an example second system. As shown in
FIG. 2, the example second system includes system 200. In
some examples, system 200 includes a compression/encryp-
tion unit 205, ECC encoder 112, a scrambler unit 210,
memory 120, a descrambler unit 205, ECC decoder 114 and
a decryption/decompression unit 220.

According to some examples, as shown in FIG. 2, com-
pression/encryption of data at compression/encryption unit
205 may result in “u”. ECC encoder 112 may receive u and
generate a codeword “x” using an ECC code (e.g., using
BCH or RS codes). Scrambler unit 210 may receive x and
cause X to be programmed or written to memory 120. The
codeword may be read from memory 120 and descrambled
by descrambler unit 205 to result in a codeword “y”. As
shown in FIG. 2, y=x+e,, where “e;’ represents errors
possibly introduced during the writing then reading of x
from memory 120 and ““T” represents a maximum number of
possible error locations for errors introduced during the
writes and reads from memory 120. ECC decoder 114 may
receive y and possibly correct identified errors to generate
“d”. As shown in FIG. 2, if the errors were correctable, d=u.
Decryption/Decompression unit 220 may then decrypt/de-
compress U to generate data originally compressed/en-
crypted by compression/encryption unit 205.

In some examples, ECC decoder 114 may include logic
and/or features to receive ECC encoded data y having e,.
ECC decoder 114 may generate an error locator polynomial
(ELP) with a given degree T that indicates e,. ECC decoder
114 may include logic and/or features to determine whether
circuitry included in ECC decoder 114 (e.g., a Chien search
circuit) is capable of finding error locations for ECC
encoded data y having e, in single pass through the circuitry
or in multiple passes. Roots for the ELP with the given
degree T may then be found based on the determination and
those roots may be used to locate the errors indicated by the
ELP.

According to some examples, determining whether the
circuitry is capable of locating errors in a single pass or
multiple pass for ECC encoded data y having e, may allow
for a type of variable speed search architecture. As described
in more detail below, the variable search architecture may be
based on a Chien search circuit arranged to locate errors in
either single or multiple passes. As mentioned previously,
average expected errors for ECC encoded data may be
substantially below worst case errors. As a result, most
errors locations may be identified in a single pass through
the circuitry that may use only a few processor clock cycles
to complete and may be a relatively fast search. However, in
some cases a large number of errors may occur that may
require multiple passes through the circuitry requiring a
large number of processor clock cycles and thus may be a
relatively slow search.

FIG. 3 illustrates an example third system. As shown in
FIG. 3, the example third system includes system 300. In
some examples, system 300 includes ECC encoder 112,
memory 120 and ECC decoder 114. Also, ECC decoder 114
is shown as including an error detector 305, Chien search
circuit 315, a corrector unit 325 and a codeword buffer 335.

In some examples, data (possibly encrypted/compressed)
may be encoded by ECC encoder 112 using an ECC code
that may include binary BCH codes or RS codes. The
resultant codeword may then be stored to memory 120.
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According to some examples, the stored codeword may be
read from memory 120 and may include possible errors. As
shown in FIG. 3, the codeword with possible errors may be
forwarded to codeword buffer 335. Codeword buffer 335
may be configured to at least temporarily store the codeword
while other elements of ECC decoder 114 identify a location
and/or a value for each error possibly included in the
codeword.

According to some examples, error detector 305 may be
configured to determine if the codeword includes any errors.
For these examples, if no errors are detected, ECC decoder
114 may include logic and/or features to indicate to corrector
unit 325 or codeword buffer 335 to forward the codeword
being stored at codeword buffer 335. However, if errors are
detected, error detector 305 may calculate partial syndromes
associated with an error locator polynomial (ELP) with a
given degree that indicates a maximum number of possible
errors for the ECC encoded data. The ELP with the given
degree may then be forwarded to Chien search circuit 315.
Roots for the ELP may be identified and error locations may
be found by Chien search circuit 315.

In some examples, as shown in FIG. 3, error locations
may be provided to corrector unit 325 from Chien search
circuit 315. For these examples, corrector unit 325 may be
configured to correct identified errors based on the error
locations. Corrector unit 325 may also be configured to
decode the codeword and then forward the data for possible
decompression/decryption and eventual delivery to the
source of the read request.

FIG. 4 illustrates an example first layout. As shown in
FIG. 4, the first layout includes layout 400. In some
examples, as shown in FIG. 4, layout 400 may be for an
example layout for a portion of a Chien search circuit. For
these examples, the portion may include 2 columns of a
Chien search circuit to evaluate partial syndromes associated
with an ELP. These 2 columns of example layout 400 may
include Galois field (GF) constant multipliers 405-1, 405-2
and state registers 410-1, 410-2, 420-1, 420-2, 430-1 and
430-2. The 2 columns of example layout 4 may also include
multipliers 415-1, 415-2, 425-1, 425-2, 435-1 and 435-2.
Examples are not limited to example layout 400. Other
examples, having more or less columns and more or less
groups of multipliers are contemplated. The jagged parallel
lines between multipliers 425-1/2 and 435-1/2 indicate these
other possible examples.

According to some examples, layout 400 shown in FIG.
4 may be an example layout that reduces possible fanout
requirements for a state register used in a Chien search
circuit. A method chosen to reduce possible fanout require-
ments may be chosen because the method may coincide with
a mathematical optimization. For example, assume that a
decoder (e.g., decoder 114) operates on D bits at a time, and
that D may be factored into D1 and D2. Looking at a single
column 1 of a parallel circuit, the following multiplications
as shown in example equation (1) may be required.

(xoc!, xoe?! x| gDl Example Equation (1):

Dividing the set of multipliers shown in example equation
1 into D2 groups of size D1, example equation (1) can be
rewritten as example equation (2):

Example Equation (2)

i {

(% of, xo® x oM ) x Pl x
ochl(X ol o, x ot L % ochl), x oc2P1!
(% ol o x ot L % ochl), x ol
(% ocl, X ocy, X oc31, e, X ochl), X
P27 DL (o x o) x o3, L x P

For example equation (2), in each group, a common factor
may be removed from the set of multipliers. A state for this
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group’s duplicated register needs to be premultiplied by this
common factor. However, if each group sources its input
from the last multiplier from a proceeding group, all com-
mon factors may be accounted for. Thus, as shown in FIG.
4, inputs for multipliers 425-1 and 425-2 are received from
respective last multipliers from multipliers 415-1 and 415-2.
Also, inputs for multipliers 435-1 and 435-2 are received
from respective last multipliers from multipliers 425-1 and
425-2.

Advantages of the above-mentioned optimization may be
two-fold. First, it accomplishes register duplication (in an
indirect way) that may help to reduce fanout from state
registers. Second, it allows a same set of GF constants to be
used by all groups of polynomial coefficients associated with
a received ELP. Allowing for the same set of GF constants
may reduce design complexity for the Chien search circuit
and also allows for specific GF constants to be selected that
may further reduce design complexity.

FIG. 5 illustrates an example second layout. As shown in
FIG. 5, the second layout includes layout 500. In some
examples, as shown in FIG. 5, layout 500 may be an
example layout for a portion of a Chien search circuit. For
these examples, the portion may include 2 rows of a Chien
search circuit, each row having a total of T1 groupings of T2
processing units. The processing units may separately
include multiple multipliers, a summer to sum outputs and
a sum register to at least temporarily store sums. Other than
the first processing units of a given row, a premultiplier may
also be included in the units to premultipy a sum value
maintained in a sum register.

In some examples, layout 500 may be an example were T1
equals 4 to represent four processing units and T2 equals 3
to represent three multipliers for each processing unit. As
shown in FIG. 5, example layout 500 has multipliers 515-1,
515-2, 530-1, 530-2, 545-1, 545-2, 555-1 and 555-2.
Example layout 500 also has sum registers 520-1, 520-2,
535-1, 535-2, 550-1 and 550-2. Example layout 500 also has
premultipliers 525-1, 525-2, 540-1, 540-2, 560-1 and 560-2.
As described more below, these multipliers, sum registers
and premultipliers may be arranged to allow for an inter-
mediate sum optimization that simplifies design and/or use
of a Chien search circuit to locate errors 1 (E1) and 2 (E2)
in ECC encoded data. Examples are not limited to example
layout 500. Other examples, having more or less rows and
more or less multipliers in each processing unit are contem-
plated. The dashed parallel lines between multipliers 555-1
and 555-2 indicate these other possible examples.

According to some examples, layout 500 may accomplish
two elements. First, sum registers such as sum registers
535-1, 535-2, 550-1 and 550-2 may be inserted to collect
intermediate sums outputted from their respective multipli-
ers. This may result in a break in possibly long fanin paths
from state registers to sum registers. Second, since not all
GF constant multipliers require the same resources, the sum
equations may be broken down and modified, such that an
overall reduction in resources used by constant multiplica-
tion is achieved. Assume that a decoder (e.g., decoder 114)
can correct up to T bits of error, and that T may be factored
into T1 and T2. Looking at a single row r of layout 500, a
sum depicted in example equation (3) may be required:

S 48,0480 L 480" Example equation (3):

Dividing the set of terms into T2 groups of size T1,
example equation (3) can be rewritten as example equation

(4):
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St o +85 o2 +85 o ...+
Sry o Sty TV Ly T s T 4y
Sary &V 487,y TV bSr ) T Ly GBI
Ss1y oSy L

By removing powers of «‘“1*?" from the preceding equa-
tions, example equation (4) can be rewritten as example
equation (5):

Sy o +8, 0¥ +85 0¥+ +87 o7

T 2, 3 T
o L7 (S 41y o7 #8742y 7 #0713 o7 oL+ 8oy 71T)

o7 2 3 7
o= (Seary +1) & #8507 42) 7 +So7; 13) o7 .+ Sy o)

In some examples, multipliers may need to be added
between the groups of sums to account for the power of 71
that were factored out as indicated above. An additional
improvement can be made here. By collecting the paren-
thetical expressions in reverse order, then multiplying each
by «?" before adding it to the previous parenthetical expres-
sion, and continuing until the first expression, the sums
above can be calculated while using only o« multipliers.
The higher powers may be accounted for by the condition
that expressions which need multiplication by powers
of «” may be fed through multiple multipliers.

According to some examples, the optimization described
thus far by example equations (4) and (5) may require that
higher order terms from sigma(x) be available prior to lower
order terms from sigma(x) or conversely, that lower order
terms need to be buffered somewhere to account for requisite
delays. This requirement may be undesirable, as the preced-
ing block that generates sigma(x) may do so from least
significant to most significant. Example equation (5) may be
modified once again to reverse the requirement.

In some examples, since each of the sums above for
example equation (5) is compared to 0, the sum may be
multiplied by any constant, and the comparison may still be
valid. Multiplying the above equations each by «~17" may
result in the following new example equations:

CxT1T2rcx—T1T2r(Slur+szu2r+szu2r+s3u3r+ L+
STlchl'”) Example equation (6):
—TY(T2-1 2 3
o AN oSy T L
SlefxT ry Example equation (7):
—T(I>-2 3
o112 )r(s(2T1+l)O(r+S(2Tl+2)[x "+

Serm>¥+ . .. +S3T10<T1’) Example equation (8):

Note that the «“”2" terms may be ignored for a Chien
search circuit that includes columns depicted in layout 500.
The above example equations (6)-(8) may now allow for a
Chien search circuit that may require lower order terms of
sigma(x) first. In some examples, instead of multiplying
each parenthetical sum by =7, each sum may be multiplied
by o=,

According to some examples, as described more below,
two rows shown in FIG. 5 for example layout 500 may be
included in a systolic array of processing units for a Chien
search circuit that may be designed to implement the above-
mentioned sum optimization.
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FIG. 6 illustrates an example systolic array 600. In some
examples, systolic array 600 may include elements of
example layouts 400 and 500. As shown in FIG. 6, systolic
array 600 may include a set of four processing units 620
(T2=2, D2=2) each having three multipliers per row (T1=3)
and four multipliers per column (D1=4). Also shown in FIG.
6 are two sets of GF constant multipliers 610 (T3=2) that
may enable ELP coefficients 605 to be evaluated to reach
error determinations 630.

According to some examples, systolic array 600 may be
used as a Chien search circuit to find T roots for an ELP
associated with errors identified in ECC encoded data. For
these examples, T may include factors T1, T2 and T3. T1*T2
may equal a number of roots identified for a single pass
through the Chien search circuit and T3 may equal a number
of passes before all T roots can be found. So for systolic
array 600, where T1=3 and T2=2 the number of roots
possibly identified for the single pass would be 3*2=6. Also,
since T3=2 a total of 6%2=12 roots may be found using
systolic array 600.

In some examples, as shown in FIG. 6, systolic array 600
may include a plurality or multitude of processing units 620.
For these examples, each processing unit may have at least
two rows with each row having a plurality of multipliers 622
to sum outputs with an output from premultipliers 624 as
shown in FIG. 6. The summed outputs may then be stored
to respective separate sum registers 628. Also, for the first
row of processing units 620, each first multiplier of a given
same column may receive an input from a given state
register from among state registers 615. State registers 615
may each be arranged to store a given output from a given
GF multiplier from among GF constant multipliers 610 that
may be used to locate a given root (e.g., using ELP coeffi-
cients 605) from among T possible roots for the ELP. For the
second row of processing units 620, each multiplier of a
given same column may receive an input from a last given
multiplier from among the processing units of the first row.
The output from the last given multiplier thus may duplicate
the input from the given state register in a similar manner as
described above for layout 400.

According to some examples, the summed outputs stored
to sum registers 628 for the first or left side column
processing units may be inputted to premultipliers 624 for
the second or right side column processing units. Also, as
indicated by the dashed lines for sum registers 628 for the
right side column processing units, summed outputs may be
inputted to premultipliers for the left side column processing
units for subsequent passes through the Chien search circuit.

In some examples, the first pass through the Chien search
circuit may include use of a first set of GF constants, each
separately associated with given state registers 615 arranged
to store the given output from GF constant multipliers 610.
The second pass through the Chien search circuit may
include use of a second set of GF constants, each separately
associated with the given state registers 615 arranged to
store another given output from another given GF field
constant multiplier 610 used to locate another given root
from among the T roots for the ELP having ELP coefficients
605.

According to some examples, ELP coefficients 605 may
represent coefficients of an ELP that may indicate a maxi-
mum number of error locations for ECC encoded data, e.g.,
as determined by a Berlekamp-Massey algorithm (BMA)
implemented by logic and/or features of a decoder. Also
each error determination of error determinations 630 may

10

15

20

25

30

40

45

50

55

60

65

8

indicate a given location of an error output by the Chien
search circuit implemented by the elements of systolic array
600.

Systolic array 600 includes one example of a type of
systolic array that may be configured to implement a Chien
search circuit to locate errors. Systolic arrays having addi-
tional columns and rows of processing units 620 that may
also have more or less multipliers are also contemplated.
Thus, examples are not limited to the 2 by 2 systolic array
depicted in FIG. 6 for systolic array 600.

FIG. 7 illustrates an example apparatus 700. Although the
apparatus 700 shown in FIG. 7 has a limited number of
elements in a certain topology, it may be appreciated that the
apparatus 700 may include more or less elements in alternate
topologies as desired for a given implementation.

The apparatus 700 may comprise a computer-imple-
mented apparatus that may be used to model a design for a
Chien search circuit arranged as mentioned above for FIGS.
4-6. The computer-implemented apparatus 700 may be
arranged to execute one or more software components
722-a. It is worthy to note that “a” and “b” and “c” and
similar designators as used herein are intended to be vari-
ables representing any positive integer. Thus, for example, if
an implementation sets a value for a=2, then a complete set
of software components 722-¢ may include components
722-1 or 722-2. The examples are not limited in this context.

In some examples, if implemented apparatus 700 is
implemented in a processor, the processor may be generally
arranged to execute one or more software components
722-a. The processor can be any of various commercially
available processors, including without limitation an AMD®
Athlon®, Duron® and Opteron® processors; ARM® appli-
cation, embedded and secure processors; IBM® and
Motorola® DragonBall® and PowerPC® processors; IBM
and Sony® Cell processors; Intel®, Atom Celeron®, Core
(2) Duo®, Core i3, Core i5, Core i7, Pentium®, Xeon®,
Xeon Phi®, Itanium® and XScale® processors; and similar
processors. Multi-core processors and other multi-processor
architectures may also be employed to implement apparatus
700.

According to some examples, apparatus 700 may include
an error component 722-1. Error component 722-1 may be
executed by circuitry 720 to determine, for a memory
system, a worst case number of errors for ECC encoded data
for which a Chien search circuit associated with a decoder
for the memory system is to locate errors based on a received
ELP having a degree T that indicates error locations for the
worst case number of errors. Error component 722-1 may
also be capable of determining an average expected number
of errors for the ECC encoded data that may be a fraction of
T. For these examples, error component 722-1 may be
capable of maintaining information to determine worst case
expected errors in worst case expected error information
724-a and information to determine average expected errors
in average expected error information 726-b. Worst case
expected error information 724-1 and average expected error
information 726-b may be maintained in a data structure
such as a lookup table (LUT).

In some examples, information included in worst case
expected error information 724-a and average expected error
information 726-5 may be based on a particular usage case
and/or types of memory included in the memory system
deploying the Chien search circuit. For example, the
memory system may be associated with a memory caching
system that may include various types of non-volatile
memory such as flash memory. Information included in
worst case expected error information 724-a and average
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expected error information 726-6 may include information
such as an expected lifetime usage of the flash memory and
expected frequency of access to/from memory arrays or
devices included in the flash memory. Since flash memory
typically becomes more error-prone with long-term usage
and/or frequent read/write accesses, longer expected lifetime
(e.g., several years) usages along with higher frequency of
access to/from the memory arrays may result in error
component 722-1 determining a relatively high number of
worst case expected errors. Alternatively, if the flash
memory has a relatively short expected lifetime (e.g., 1 or 2
years), and/or is infrequently accessed and/or powered off
for extended periods, error component 722-1 may determine
a relatively low number of worst case expected errors.
Information included in average expected errors 726-b for
average expected errors may account for the expected life-
time and frequencies of access to enable error component
722-1 to determine an average error rate.

In some examples, apparatus 700 may also include a
model component 722-2. Model error component 722-2 may
be executed by circuitry 720 to model a design for the Chien
search circuit based on various GF constants that may be
used by the Chien search circuit to identify first roots for a
first received ELP (e.g., ELP 705) having a first degree that
equals the fraction of T to locate errors for the average
expected number of errors in a single pass through the Chien
search circuit. Model component 722-2 may also model the
design to identify second roots for a second received ELP
(e.g., ELP 710) having the degree T to locate errors for the
worst case number of errors in multiple passes through the
Chien search circuit.

According to some examples, T may include factors T1,
T2 and T3, where T1 equates to a number of columns of
multipliers that may be separately included in respective T2
processing units included in a plurality of processing units
for the modeled Chien search circuit design. For these
examples, T1*T2 may equal a first number of roots the
modeled Chien search circuit design may be capable of
identifying in the single pass. The identified roots may then
be used to locate errors for the average expected number of
errors. Also, T1*T2*T3 may equal a second number of roots
the modeled Chien search circuit design may be capable of
identifying in T3 passes to locate errors for the worst case
number of errors.

An example of a modeled Chien search circuit for T that
includes factors T1, T2 and T3 may be the Chien search
circuit implemented by systolic array 600 described above
for FIG. 6. For systolic array 600, T1=3, T2=2 and T3=2. So
for this example Chien search circuit, the average expected
number of errors may by 2*3=6 errors and the worst case
expected errors may be 2%*3%2=12.

In some examples, model component 722-2 may be
capable of maintaining GF constant information 728-¢ (e.g.,
in a LUT). GF constant information 728-¢ may include
information for various GF constants that may be used to
model a design for the Chien search circuit such that a single
pass through the modeled Chien search circuit design
includes use of a set of GF constants that may have been
determined to have a lower combinatorial complexity. Also,
subsequent passes through the modeled Chien search circuit
design may include use of different sets of GF constants.
These different sets may have also been determined to have
a lower combination complexity. GF constant information
728-c may include selected sets of GF constants and these
selected sets may determine values for T1, T2 or T3 of the
modeled Chien search circuit design to generate design 715.
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Included herein is a set of logic flows representative of
example methodologies for performing novel aspects of the
disclosed architecture. While, for purposes of simplicity of
explanation, the one or more methodologies shown herein
are shown and described as a series of acts, those skilled in
the art will understand and appreciate that the methodologies
are not limited by the order of acts. Some acts may, in
accordance therewith, occur in a different order and/or
concurrently with other acts from that shown and described
herein. For example, those skilled in the art will understand
and appreciate that a methodology could alternatively be
represented as a series of interrelated states or events, such
as in a state diagram. Moreover, not all acts illustrated in a
methodology may be required for a novel implementation.

A logic flow may be implemented in software, firmware,
and/or hardware. In software and firmware embodiments, a
logic flow may be implemented by computer executable
instructions stored on at least one non-transitory computer
readable medium or machine readable medium, such as an
optical, magnetic or semiconductor storage. The embodi-
ments are not limited in this context.

FIG. 8 illustrates a logic flow 800. Logic flow 800 may be
representative of some or all of the operations executed by
one or more logic, features, or devices described herein,
such as apparatus 700. More particularly, logic flow 800 may
be implemented by error component 722-1 or design com-
ponent 722-2.

According to some examples, logic flow 800 at block 802
may determine, for a memory system, a worst case number
of errors for ECC encoded data for which a Chien search
circuit associated with a decoder for the memory system is
to locate errors based on a received ELP having a degree T
that indicates error locations for the worst case number of
errors. In some examples, error component 722-1 may be
capable of determining the worst case number of errors.

In some examples, logic flow 800 at block 804 may
determine an average expected number of errors for the ECC
encoded data that is a fraction of T. For these examples, error
component 722-1 may also be capable of determining the
average expected number of errors.

According to some examples, logic flow 800 at block 806
may model a design for the Chien search circuit based
various Galois field constants that are to be used by the
Chien search circuit to identity first roots for a first received
ELP having a first degree that equals the fraction of T to
locate errors for the average expected number of errors in a
single pass through the Chien search circuit. Logic flow 800
at block 806 may also identify second roots for a second
received ELP having the degree T to locate errors for the
worst case number of errors in multiple passes through the
Chien search circuit. For these examples, model component
722-2 may be capable of modeling the design for the Chien
search circuit.

FIG. 9 illustrates an embodiment of a storage medium
900. The storage medium 900 may comprise an article of
manufacture. In some examples, storage medium 900 may
include any non-transitory computer readable medium or
machine readable medium, such as an optical, magnetic or
semiconductor storage. Storage medium 900 may store
various types of computer executable instructions, such as
instructions to implement logic flow 800. Examples of a
computer readable or machine readable storage medium
may include any tangible media capable of storing electronic
data, including volatile memory or non-volatile memory,
removable or non-removable memory, erasable or non-
erasable memory, writeable or re-writeable memory, and so
forth. Examples of computer executable instructions may
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include any suitable type of code, such as source code,
compiled code, interpreted code, executable code, static
code, dynamic code, object-oriented code, visual code, and
the like. The examples are not limited in this context.

FIG. 10 illustrates an example computing device 1000. In
some examples, as shown in FIG. 10, computing device
1000 may include a processing component 1040, other
platform components 1050 or a communications interface
1060.

According to some examples, processing component
1040 may execute processing operations or logic for appa-
ratus 700 and/or storage medium 900. Processing compo-
nent 1040 may include various hardware elements, software
elements, or a combination of both. Examples of hardware
elements may include devices, logic devices, components,
processors, miCroprocessors, circuits, processor circuits, cir-
cuit elements (e.g., transistors, resistors, capacitors, induc-
tors, and so forth), integrated circuits, application specific
integrated circuits (ASIC), programmable logic devices
(PLD), digital signal processors (DSP), field programmable
gate array (FPGA), memory units, logic gates, registers,
semiconductor device, chips, microchips, chip sets, and so
forth. Examples of software elements may include software
components, programs, applications, computer programs,
application programs, system programs, software develop-
ment programs, machine programs, operating system soft-
ware, middleware, firmware, software modules, routines,
subroutines, functions, methods, procedures, software inter-
faces, application program interfaces (API), instruction sets,
computing code, computer code, code segments, computer
code segments, words, values, symbols, or any combination
thereof. Determining whether an example is implemented
using hardware elements and/or software elements may vary
in accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints, as desired for a given example.

In some examples, other platform components 1050 may
include common computing elements, such as one or more
processors, multi-core processors, Co-processors, memory
units, chipsets, controllers, peripherals, interfaces, oscilla-
tors, timing devices, video cards, audio cards, multimedia
input/output (I/O) components (e.g., digital displays), power
supplies, and so forth. Examples of memory units associated
with either other platform components 1050 may include
without limitation, various types of computer readable and
machine readable storage media in the form of one or more
higher speed memory units, such as ROM, RAM, DRAM,
Double-Data-Rate DRAM (DDRAM), synchronous DRAM
(SDRAM), SRAM, programmable ROM (PROM),
EPROM, EEPROM, NAND flash memory, NOR flash
memory, polymer memory such as ferroelectric polymer
memory, ferroelectric transistor random access memory
(FeTRAM or FeRAM), nanowire, ovonic memory, ferro-
electric memory, 3-dimentional cross-point memory,
SONOS memory, magnetic or optical cards, an array of
devices such as Redundant Array of Independent Disks
(RAID) drives, solid state memory devices (e.g., USB
memory), SSDs and any other type of storage media suitable
for storing information.

In some examples, communications interface 1060 may
include logic and/or features to support a communication
interface. For these examples, communications interface
1060 may include one or more communication interfaces
that operate according to various communication protocols
or standards to communicate over direct or network com-
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munication links. Direct communications may occur via use
of communication protocols or standards described in one or
more industry standards (including progenies and variants)
to include the Peripheral Component Interconnect (PCI)
Express Base Specification, revision 3.0, published in
November 2010 (“PCI Express” or “PCle”), the Universal
Serial Bus Specification, revision 3.0, published in Novem-
ber 2008 (“USB”), the Serial ATA (SATA) Specification,
revision 3.1, published in July 2001, Request for Comments
(RFC) 3720, Internet Small Computer System Interface
(iSCSI), published in April 2004 and/or the Serial Attached
SCSI (SAS) Specification, revision 2.1, published in
December 2010. Network communications may occur via
use of various communication protocols and may operate in
compliance with one or more promulgated standards or
specifications for wired or wireless networks by the Institute
of Electrical Engineers (IEEE). These standards are speci-
fications may include, but are not limited to, IEEE 802.11-
2012 Standard for Information technology—Telecommuni-
cations and information exchange between systems—I.ocal
and metropolitan area networks—Specific requirements Part
11:WLAN Media Access Controller (MAC) and Physical
Layer (PHY) Specifications, published March 2012, later
versions of this standard (“IEEE 802.11”) for wireless
mediums or IEEE 802.3-2008, Carrier sense Multiple access
with Collision Detection (CSMA/CD) Access Method and
Physical Layer Specifications, Published in December 2008
(hereinafter “IEEE 802.3”) for wired mediums, one or more
protocols that may encapsulate Fibre Channel frames over
Ethernet networks referred to as fiber channel over Ethernet
(FCoE), compatible with the protocols described by the
American National Standard of Accredited Standards Com-
mittee INCITS T11 Technical Committee, Fibre Channel
Backbone-5 (FC-BB-5) Standard, Revision 2.0, published
June 2009 and/or protocols associated with RFC 3530,
Network File System (NFS), version 4 Protocol, published
in April 2003.

Computing device 1000 may be part of a system or device
that may be, for example, user equipment, a computer, a
personal computer (PC), a desktop computer, a laptop com-
puter, a notebook computer, a netbook computer, a tablet
computer, a tablet, a portable gaming console, a portable
media player, a smart phone, a server, a server array or
server farm, a web server, a network server, an Internet
server, a work station, a mini-computer, a main frame
computer, a supercomputer, a network appliance, a web
appliance, a distributed computing system, multiprocessor
systems, processor-based systems, or combination thereof.
Accordingly, functions and/or specific configurations of
computing device 1000 described herein, may be included
or omitted in various embodiments of computing device
1000, as suitably desired.

The components and features of computing device 1000
may be implemented using any combination of discrete
circuitry, application specific integrated circuits (ASICs),
logic gates and/or single chip architectures. Further, the
features of computing device 1000 may be implemented
using microcontrollers, programmable logic arrays and/or
microprocessors or any combination of the foregoing where
suitably appropriate. It is noted that hardware, firmware
and/or software elements may be collectively or individually
referred to herein as “logic” or “circuit.”

It should be appreciated that the exemplary computing
device 1000 shown in the block diagram of FIG. 10 may
represent one functionally descriptive example of many
potential implementations. Accordingly, division, omission
or inclusion of block functions depicted in the accompany-
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ing figures does not infer that the hardware components,
circuits, software and/or elements for implementing these
functions would necessarily be divided, omitted, or included
in embodiments.

One or more aspects of at least one example may be
implemented by representative instructions stored on at least
one machine-readable medium which represents various
logic within the processor, which when read by a machine,
computing device or system causes the machine, computing
device or system to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Various examples may be implemented using hardware
elements, software elements, or a combination of both. In
some examples, hardware elements may include devices,
components, processors, Microprocessors, circuits, circuit
elements (e.g., transistors, resistors, capacitors, inductors,
and so forth), integrated circuits, application specific inte-
grated circuits (ASIC), programmable logic devices (PLD),
digital signal processors (DSP), field programmable gate
array (FPGA), memory units, logic gates, registers, semi-
conductor device, chips, microchips, chip sets, and so forth.
In some examples, software elements may include software
components, programs, applications, computer programs,
application programs, system programs, machine programs,
operating system software, middleware, firmware, software
modules, routines, subroutines, functions, methods, proce-
dures, software interfaces, application program interfaces
(API), instruction sets, computing code, computer code,
code segments, computer code segments, words, values,
symbols, or any combination thereof. Determining whether
an example is implemented using hardware elements and/or
software elements may vary in accordance with any number
of factors, such as desired computational rate, power levels,
heat tolerances, processing cycle budget, input data rates,
output data rates, memory resources, data bus speeds and
other design or performance constraints, as desired for a
given implementation.

Some examples may include an article of manufacture or
at least one computer-readable medium. A computer-read-
able medium may include a non-transitory storage medium
to store logic. In some examples, the non-transitory storage
medium may include one or more types of computer-
readable storage media capable of storing electronic data,
including volatile memory or non-volatile memory, remov-
able or non-removable memory, erasable or non-erasable
memory, writeable or re-writeable memory, and so forth. In
some examples, the logic may include various software
elements, such as software components, programs, applica-
tions, computer programs, application programs, system
programs, machine programs, operating system software,
middleware, firmware, software modules, routines, subrou-
tines, functions, methods, procedures, software interfaces,
API, instruction sets, computing code, computer code, code
segments, computer code segments, words, values, symbols,
or any combination thereof.

According to some examples, a computer-readable
medium may include a non-transitory storage medium to
store or maintain instructions that when executed by a
machine, computing device or system, cause the machine,
computing device or system to perform methods and/or
operations in accordance with the described examples. The
instructions may include any suitable type of code, such as
source code, compiled code, interpreted code, executable
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code, static code, dynamic code, and the like. The instruc-
tions may be implemented according to a predefined com-
puter language, manner or syntax, for instructing a machine,
computing device or system to perform a certain function.
The instructions may be implemented using any suitable
high-level, low-level, object-oriented, visual, compiled and/
or interpreted programming language.

Some examples may be described using the expression
“in one example” or “an example” along with their deriva-
tives. These terms mean that a particular feature, structure,
or characteristic described in connection with the example is
included in at least one example. The appearances of the
phrase “in one example” in various places in the specifica-
tion are not necessarily all referring to the same example.

Some examples may be described using the expression
“coupled” and “connected” along with their derivatives.
These terms are not necessarily intended as synonyms for
each other. For example, descriptions using the terms “con-
nected” and/or “coupled” may indicate that two or more
elements are in direct physical or electrical contact with each
other. The term “coupled,” however, may also mean that two
or more elements are not in direct contact with each other,
but yet still co-operate or interact with each other.

It is emphasized that the Abstract of the Disclosure is
provided to comply with 37 C.F.R. Section 1.72(b), requir-
ing an abstract that will allow the reader to quickly ascertain
the nature of the technical disclosure. It is submitted with the
understanding that it will not be used to interpret or limit the
scope or meaning of the claims. In addition, in the foregoing
Detailed Description, it can be seen that various features are
grouped together in a single example for the purpose of
streamlining the disclosure. This method of disclosure is not
to be interpreted as reflecting an intention that the claimed
examples require more features than are expressly recited in
each claim. Rather, as the following claims reflect, inventive
subject matter lies in less than all features of a single
disclosed example. Thus the following claims are hereby
incorporated into the Detailed Description, with each claim
standing on its own as a separate example. In the appended
claims, the terms “including” and “in which” are used as the
plain-English equivalents of the respective terms “compris-
ing” and “wherein,” respectively. Moreover, the terms
“first,” “second,” “third,” and so forth, are used merely as
labels, and are not intended to impose numerical require-
ments on their objects.

Although the subject matter has been described in lan-
guage specific to structural features and/or methodological
acts, it is to be understood that the subject matter defined in
the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features
and acts described above are disclosed as example forms of
implementing the claims.

What is claimed is:

1. A method comprising:

receiving, by a memory caching device, an error locator
polynomial (ELP) having a degree indicating a number
of error locations for error correction code (ECC)
encoded data;

determining, by the memory caching device, when the
number of error locations is less than an established
threshold;

generating, by the memory caching device, one or more
roots for the ELP in a single pass through a plurality of
processing units included in a Chien search circuit,
when the determining indicates that the number of error
locations is less than the established threshold; and
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identifying, by the memory caching device, one or more
of the number of error locations in the ECC encoded
data using one or more of the roots for the ELP.

2. The method of claim 1, further comprising using, by the
memory caching device, a set of Galois field constant
multipliers during the single pass through the plurality of
processing units included in the Chien search circuit.

3. The method of claim 1, wherein the ECC comprises one
of'a Reed-Solomon (RS) code or a binary Bose, Chaudhuri,
and Hocquenghem (BCH) code.

4. The method of claim 1, further comprising generating,
by the memory caching device, the one or more roots for the
ELP in multiple passes through the plurality of processing
units included in the Chien search circuit, when the deter-
mining indicates that the number of error locations is not less
than the established threshold.

5. An apparatus, comprising

a memory controller containing machine readable

medium comprising machine executable code having
stored thereon instructions for performing a method of
locating errors for error correction code (ECC) encoded
data; and

a processor coupled to the memory, the processor con-

figured to execute the machine executable code to

cause the processor to:

receive an error locator polynomial (ELP) having a
degree indicating a number of error locations for
error correction code (ECC) encoded data;

determine when the number of error locations is less
than an established threshold;

generate one or more roots for the ELP in a single pass
through a plurality of processing units included in a
Chien search circuit, when the determining indicates
that the number of error locations is less than the
established threshold; and

identify one or more of the number of error locations in
the ECC encoded data using one or more of the roots
for the ELP.

6. The apparatus of claim 5, wherein the processor is
further configured to execute the machine executable code to
cause the processor to use a set of Galois field constant
multipliers during the single pass through the plurality of
processing units included in the Chien search circuit.
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7. The apparatus of claim 5, wherein the ECC comprises
one of' a Reed-Solomon (RS) code or a binary Bose, Chaud-
huri, and Hocquenghem (BCH) code.

8. The apparatus of claim 5, wherein the processor is
further configured to execute the machine executable code to
cause the processor to generate the one or more roots for the
ELP in multiple passes through the plurality of processing
units included in the Chien search circuit, when the deter-
mining indicates that the number of error locations is not less
than the established threshold.

9. A non-transitory machine readable medium having
stored thereon instructions for performing a method com-
prising machine executable code which when executed by a
processor, causes the processor to:

receive an error locator polynomial (ELP) having a degree

indicating a number of error locations for error correc-
tion code (ECC) encoded data;

determine when the number of error locations is less than

an established threshold;

generate one or more roots for the ELP in a single pass

through a plurality of processing units included in a
Chien search circuit, when the determining indicates
that the number of error locations is less than the
established threshold; and

identify one or more of the number of error locations in

the ECC encoded data using one or more of the roots
for the ELP.

10. The non-transitory machine readable medium of claim
9, wherein the machine executable code, when executed by
the processor, further causes the processor to use a set of
Galois field constant multipliers during the single pass
through the plurality of processing units included in the
Chien search circuit.

11. The non-transitory machine readable medium of claim
9, wherein the ECC comprises one of a Reed-Solomon (RS)
code or a binary Bose, Chaudhuri, and Hocquenghem
(BCH) code.

12. The non-transitory machine readable medium of claim
9, wherein the machine executable code, when executed by
the processor, further causes the processor to generate the
one or more roots for the ELP in multiple passes through the
plurality of processing units included in the Chien search
circuit, when the determining indicates that the number of
error locations is not less than the established threshold.
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